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Abstract

This thesis addresses the problem of estimating the

target angle with respect to the boresite of an Amplitude-

Comparison Monopulse Radar. The maximum likelihood esti-

mate is used to track the target and produce a mean-square

error. This error is approximated from a computer simu-

lated tracking loop and then compared to the Cramer-Rao

and Ziv-Zakai bounds.

At high signal-to-noise ratios (SNR), the Cramer-

Rao bound is useful in lower bounding the mean-square error.

At low SNR levels a phenomena known as thF threshold effect

occurs and the Cramer-Rao bound becomes unreliablu as a

1.ower bound. The Ziv-Zakai bound is a tighter bound and

can be used to lower bound the mean-square error at very

low SNR levels. It also proves useful in determining the

SNR level at which the threshold effect occurs.

ix



LOWER BOUNDS iPPLIED TO THE MEAN-SQUARE TRACKING

ERROR OF AN AMPLITUDE-COMPARISON

MONOPULSE RADAR

I. Introduction

Background

A itonopulse radar tracks by maintaining the radar

boresite on the target. As the target moves off of bore-

site an error voltage is developed proportional to the

angle off boresite. This information is fed to the radar

angle servo which in turn steers the boresite toward the

targeL. Theoretically, this process is done using infor-

mation gained from a single pulse. Breaklock occurs at a

certain signal-to-noise ratio (SNR) per pulse when the

information gained from the pulse is not sufficient to

steer the boresite to the target accurately. Consequently,

the target moves out of the antenna beam width.

At a certain minimum SNR level, a phenomena known

as the threshold effect occurs. Consider the example of a

probability density function (pdf) of an observation z.

Assume that the density function has several maximums, the

largest of which is at the center. The maximum likelihood

(ML) estimate of z is that value of z which maximizes the

pdf [Ref 61.
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For the case of no noise in the observation z,

the maximum is at the origin (Figure 1). For the low noise

situation, the maximum is shiftec' a small distance from the

origin which is proportional to the standard deviation

of the additive noise. When the ncise becomes comparable

to the mean of the pdf, not only is the local maximum near

the origin shifted but it is highly probable that some

other local maximum of the pdf becomes the largest. Now

thq error is much larger than the error caused by the shift-

ing of the central local rmaximum. These large errors are

referred to as anomalous errors. When anomaJoas errors

occur, the system behaves nonlinearly and its performance

degrades rapidly. This is what is known as the threshold

effect [Ref 11].

iIP(z)

Fig. 1. Probability Density Function of Observation z

The incoming target return is processed in the

monopulse radar by weighting the amplitude of the return by

the antenna gain factor of its sum and difference beams.

2



This amplitude weighting is proportional to the target

angle off of boresite and is used to steer the radar bore-

site to the target. Because of random channel noise how-

ever, the boresite will be steered to the vicinity of the

actual target position. The vicinity is described in terms

of the mean-square error (MSE). It will be shown hereafter

that as the SNR level decreases, the MSE increases.

The threshold can be quantified by describing a

mean-square tracking error, driving its lower bound and i
then comparing the two. It can be showxi [Ref 2] that the

Cramer-Rao (CR) bound for the variance of t-e probability

density of the angle off boresite e3timate is proporti.onal

to the beam-width and SNR.

BW

Var(e) SN (i)

This bound tells us that no matter what SNR, the

variance is kept small by maintaining a narrow beam-width.

However, the CR bound is only useful when the SNR level

is well above the system threshold. Below threshold the

CR bound becomes inaccurate and proves unable to predict

breaklock. A much tighter bound (one good at low SNR) is

needed to quantify and predict the system threshold or

breaklock point.

3.



Problem and Scope

The purpose of this thesis is to develop a maximum

likelihood estimate of the target angle off boresite and

use it to track the target. From this procedure the MSE

can be derived through simulation and used to determine

at what SNR the MSE becomes large enough to be considered

a breaklock point. The simulation results will then be

compared to the CR and Ziv-Zakai bounds to see which bound

will provide an accurate prediction of the breaklock point.

The Ziv-Zakai (ZZ) bound is designed to be tighter

at low SNR levels [Ref 111. The bound was derived by con-

sidering the suboptimal detection procedure which involves

an estimate cJ one of two possible values of a parameter.

A criteria was developed for determining which value of

the parameter was estimated. This approach is called the

Estimation Theorist's Approach. The probability of error

associated with this approach is lower bounded by the proba-

bility of error achieved by the optimal detection scheme

(which is referred to as the Hypothesis Tester's Approach).

This entire process resulted in new bounds based on known

results in detection theory. The advantage of the ZZ bound

is that it is independent of biases associated with esti-

mators and is therefore tighter than other bounds [Ref 11].

The ZZ bound was modified to fit a problem involv-

ing the bearing estimate of a linear array [Ref 8]. This

4



modified version is adapted and used to derive a lower

bound for the MSE for this problem.

Assumptions

This problem is approached assuming a one-

dimensional Amplitude-Comparison Monopulse Radar (i.e.,

azimuth case only). The channel noise is assumed to be

white gaussian noise (WGN) independent from channel to

channel and pulse to pulse with zero mean and variance

N /2. The antenna functions used to describe the sum and
0

difference beams are derived assuming -he two radar

antennas are point sources in a linear array. The ampli-

tude of the return signal, A, is assumed to be random and

unknown since the target radar cross-section is unknown.

However, A can be estimated as will be shown and used in

the estimation of the target angle relative to boresite.

The radar's 3 '3 beam-width is 30 and the PRF is

200 pps.

A stationary target will be tracked first after

which a moving target will be considered.

General Approach

The first step is to develop adequate antenna func-

tions which can weight the return signal amplitude propor-

tional to the target angle relative to boresite. The

antenna functions are used to form the observation r(t).

The product of the return signal s(t), its amplitude A,

5



and the antenna functic i, added to the channel noise makes

up an observation.

r(t) = As(t)g(O) + n(t)

It is shown that the one-dimensional monopulse

radar has two channels and will therefore have two observa-

tions r 1 (t) and r 2 (t). With these observations and their

joint pdf, the maximum likelihood estimate can be derived

by finding

S£n P (r lr /A ,O) = 0 (2)
36 1 2/AO

where p(r 1 r 2 /A,O) is the joint pdf of r1 and r 2 , A is the

amplitude of the return signal and 6 is the target angle

relative to borosite.

This results in an equation that is a function of

e, the actual target position relative to boresite, and e,

the estimated target position. It is then shown that this

equation is zero when e = 0, or when the radar boresite

is pointing at the actual target position. This equation

is called the error equation and is used to steer the

antenna toward the target.

Once the error equation is obtained, the ZZ bound

is derived following the steps outlined in reference [8].

At this point, a computer simulated tracking loop

is designed and implemented. The tracking loop will yield

an error between the actual target position and the

I
6
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boresite position. This error is developed into an MSE

and then plotted for different SNR levels. The MSE will

be a function of time since an ertor will develop for each

pulse or observation received. The breaklock point will

occur when the MSE grows unbounded as the number of pulses

(or observations) increases. The level of SNR where this

occurs is compared to the Cramer-Rao and Ziv-Zakai bounds

to quantify the system threshold or breaklock point.

Both the stationary and nonstationary targets are

used to determine breaklock. I

7



II. The Radar Model

The Antenna Functions

A simple block diagram of a one-dimensional mono-

pulse radar is shown in Figure 2.

AB+

Fig. 2. Simple Block Diagram of Radar

The patterns of antennas A and B are combined so

as to produce two beams. The sum beam, A+B, is represented

as an antenna function g E(0). Likewise, the difference

beam, A-B, is represented as g A(a). The antenna functions

are used to describe the amplitude weighting of the target

return. The maximum gain occurs at the antenna boresite

(6=0) and decreases as 0 increases.

To derive the antenna functions, the two antennas

are considered as point sources in a two-element linear

array (see Figure 3).
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zo

.II
BA

-x 0 X .X

Fig. 3. Two Point Sources in the x-z Plane

A plane wave approaching from an arbitrary direc-

tion in the x-z plane can be described as

EA =Ee (2)

jkB .r(3)

where E is the amplitude of the plane wave and

A 0 0

KB -k 0kx ox

and

A A A

r xsin 0 cos + ysin 6 sin + z cos

Performing the dot product and substituting back into

equationq (2) and (3) gives

= 0Ex° sin 0

9



E e 0=0 sin (5)

Equations (4) and (5) can now be used to form the sum

and difference beams of the monopulse radar.

jk x° sin e -jkox sin (
EA + B = E(e o+ e 00) (6)

jkox sin 0 -jkoxO sin e
EA - EB= E (e - e 00(7)

Using Euler's equation and taking the magnitude yields

[Ref 8]

lEA + EBI = 2E0 cos u (8)

SE - E = 2E° sin u (9)

where u =k x sin 0.
o o

The antenna functions for the radar model can be

obtained by normalizing equations (8) and (9) to produce

g9(u) = cos u (10)

g9(u) = sin u (11)

These functions represent the monopulse sum and

difference beams. The patterns from the two antennas are

approximated in Figure 4. To obtain the sum beam these

two patterns are summed and yield the pattern shown in

Figure 5a. The difference beam is obtained by subtracting

the two patterns which yields the pattern in Figure 5b.

10
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z I
Z^

-X0 Xo l

Fig. 4. The Antenna Patterns of the Two Ideal
Antennas of the Monopulse Radar

z z
g ~(U)

-9Oo°9 -90oo/ x

8 b'

Fig. 5. The Two Monopulse Beams
(a) The Sum Beam; (b) the Difference Beam
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Lf the boresite is pointing directly at the target

gE (u) = cos (sin(0)) =1.

and

g,(u) =sin (sin(0)) =0

Now that the antenna functions have been estab-

lished, a model for estimating the angle off boresite can

be developed.

The block diagram in Figure 6 shows the basic

system. The signal s(t) with unknown amplitude A is

weighted by the antenna functions gT.(u) and gA(u). The

channel noise n(t) is added to each channel output to

produce the observations rM(t) and r 2 (t). These observa-

tions enter the estimator which produces an output (an

estimate of the target position relative to boresite) that

is used as input to the angle servo. The angle servo

then moves the radar boresite.

The Estimator

A maximum likelihood estimate will be taken with

respect to the observations rl(t) and r 2 (t). To do thisi2

a joint probability density function of rI(t) arid r 2 (t)

is needed.

12



the Addiion( f Estimator

The ob e va i n r(tuan r2(t) ar

r 1 (t) = ~ust +nt)(2

Ideal - A"-- t +2 (t)
Antennas

Fig. 6. Biock Diagram of the Radar Model Showing
the Addition of the Estimator and Servo

The observations rlet and rnd are

rl(t) = Agg(u)s(t) + n(t) (12)

r2(t = AgA (u)s tM + a M) (13)

where n(t) is additive white gaussian channel noise and A

is the unknown amplitude of the target return.

For convenience, let g (u) = gi(u) and g,(u)=

g 2 (u).

The maximum likelihood estimator is formed by

operating on the density function of the observations.

Since the observation, r(t) = As(t)g(u)+n(t), falls under

the category of an uncountable infinite number of points,

it needs to be transformed into a set of countable

13



infinite vectors to form the probability density function.

The set of vectors is formed by decomposing the observa-

,tions rl(t) and r 2 (t) into a basis set formed by applying

the Gram-Schmidt orthogonalization method (Ref 10]. For

the single pulse problem the orthonormal basis set is

one-dimensional with

s(t)/ 0<t<T
0 else

then

T

-- A/~g1 (u) + nI(14)

where

= I//-j s(t) n(t) dt

Similarly, 
1

=f T

rr1 r 2 (t)l 1(t) dt

S~ and then
= A/Eg2 (u) + n 2  

(15)

S2 
14

i a t r 2 1-- - - - -- -(- ) -n-2-(-5)



s Since the noise components, ni, are independent gaussian

random variables, rl and r are gaussian and independent.

Their statistics are

E{rlI/A,u} = A/Egl(u); Var(ri/A,u) = No/2 (16)

E{r 2 1 /A,u} A/Eg 2 (u); Var(r 2 1 /A,u) = No/2 (1O)

At this point only a single pulse is being con-

sidered so the second subscript on the vector observations

will be dropped.

The pdf of the observations is the joint pdf of

r and r 2. Since they are independent, the joint pdf is

p(rlr 2 /A,u) = p(rl/A,u)p(r 2 /A,u)

P(rlr2/Au) = ( ½
1 2' TIN

0I -l2 2
exp {th [(r -Avxiugm (u)o + (re-At/eR2 (u)) ]

To obtain the maximum likelihood estimate [Ref 6]

we find

D/MA[£n p(r 1 r 2 /A,u)] = 0

and

3/Du[kn p(rlr 2 /A,u)] = 0

15



Let V/aug(u) = g(u)

knp(rIr 2 /A,u) = knk - l/No[ (rl-Av"gl(u))2

+ (r 2 -Avfg 2 (u)) 2

where k is a constant.

Then

•/•A[£n P(rlr2 /A'u) ]=N

+ 2(r 2 -A/Eg2 (u)) (-g 2 (u) VE)] 0

Solving for A we get

r 19g1 (u) + r 2g 2 (u)
A - 2 2 (19)

I/~,(u) + g 2 (u))

Now to find U

aiau[,n plrlr2/A,u) ] 7= [ 2(rl-A/Egl (u))

(-A/Egl(u))+2(r 2 -AV/Eg 2 (u))(-AV'Eg 2 (u))] = 0

Solving for A/E yields

= rlg1 (u) + r 2g 2 (u)

glu)gl(u) + g 2 (u)g 2 (u)

Substituting equation (19) for AVE yields

rlgl(u) + r 2 g 2 (u) rlg,(u) + r 2 g2 (u)

2 2
2(u) + g 2 (u) g1 (u)gl(u) + g 2 (u)g42 (u)

16
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continuing we get

[r 1 gi (u) +r 2 g 2 (u)][gl (u) gl (u) +g 2 (u)g 2 (u) ]

2 2[rigI 'u)+r 2g 2 (u)] [g2 (u) +g2 (u)

rg 1 (u)gl(u) + rigl(u)g2 (u)g 2 (u) + r 2g 1 (u)g 2 (u)g 1 (u)

r 2 g2 (u)g 2 (u)

2 2 2
Sr1g1 (u) u) + rlg 2 (u)g1 (u) + r 2 g1 (u)g 2 (u)

2 2 "+ r 2 g22 (u)g 2 (u)

rlg 2 (u) [g1 (u) g2 (u) -gl (u) g 2 (u) ]

+ r 2 gl(u) [gl (u) g 2 (u)-gl(u)g2 (u)] = 0

which for u = u results in

r 1 g 2 (u) - r 2 g1 (u) = 0 (20)

Equation (20) is the general error equation for a

one-dimensional Amplitude-Comparison Monopulse Radar. This

equation will be used to steer the radar boresite to the

target. To see this, recall that gl(u) = cos u and

g 2 (u) = sin u. Substituting these into equation (20)

gives

r sin u -r cos u = (21)1 2

17



The expected value of equation (21) is

A

E{r 1 sin u - r2 cos u}

A A

= A/E[cos u sin u - sin u cos u]

S= AVE sin (u - u ) (22)

This represents the error equation for a no noise case.

Clearly, if u = u the error is zero. This means that the

radar boresite is pointing directly at the target. When

the WGN is considered, however, the error is never zero

and the error equation is random.

AA

E = r sin u - r2 cos u (23)

The Discriminator Curve

if equation (22) is normalized with respect to

the return signal amplitude and energy it becomes

S= sin (Au) (24)

where Au = u - u. This equation, which is the mean of

equation (23), describes a discriminator curve. The dis-

criminator curve can be used to obtain a value for Au

which is a funztion of the target angle e (see Figure 7).

For each value of c on the discriminator curve 1:
there is a unique corresponding value for Au as long as the

linear portion of the curve is used.

18



IE

tAUmax

-AUmax AiLU

Fig. 7. Discriminator Curve

Equation (23) is also a discriminator curve. How-

ever, since rI and r are random variables, a different

curve is produced for each value of r1 and r This pre-

vents the use of equation (23) to design a discriminator. i

Equation (24), being the average or mean of (23), is more

practical for a discriminator design since it is unchanging

with each observation. Both equations (23) and (24) are

used to produce a Au to steer the radar boresite. Equa-

tion (23) produces the error value E which contains the

target position information p).u' a noise component. Equa-

tion (24), or the discriminator curve in Figure 7, uses

the value of e from equation (23) to produce a Au that

does not include the noise component. When Au is sent to

the angle servo to move the boresite, a tracking error

develops.

19



This can best be seen by an example. Lat the

target position relative to baresite be 1.00. Ideally,

the error, e, would produce a Au on the first return pulse

that corresponds to 1.00. However, due to the additive

WGN, let Au from Figure 7 correspond to 0.90. This value

is sent to the angle servo to move the radar boresite and

the resulting new target position relative to boresite

is 0.10. This is also the tracking error. On the next

pulse an error is produced tha,.. corresponds to a targetI

angle of 0.10 plus a noise component. Each time (i.e., i

observation), the bore site is moved closer to the target

until a steady-state error is developed. As will be shown

later, the steady-state error can be formed into an MSE.

To quantify the threshold of the radar system the

MSE needs to be lower bounded. The lower bounds will

reveal the minimum the MSE can be for the system and alsoj help determine the SNR level at which breakiock or the

threshold effect occurs. The two bounds to be considered
are the Cramer-Rao and Ziv Zakai bounds (Ref s 6; 12].

The Ziv-Zakai (ZZ) Bound

The ZZ bound as developed in references [8; 12]

is stated as follows:

e2()> max sin 2 0P e(-6,0) (25)

0<0<0

20



where 6 is the target angle relative to boresite and 0P

is defined by

sin 6 + sin 0
sin O max

p 2

The probability of error, P (-8,0) is determined from
e

detection theory and denotes the error probability of the

best procedure for deciding whether a target is at -6 or

6 when it is known that a target is at one of these posi-

tions and each has equal possibilities [Refs 6; 8].

The probability of error can be described as

P(C) = P{H0 }P{k>O/H 0 } + P{HI)P{.<O/HI} (26)

where H and H1 are two observation hypotheses and k is

the log-likelihood ratio as defined in reference [6).

For the minimum probability of error case, P(H 0 } = P{H I

and therefore the detection threshold = 1 [Ref 6).

To begin with, the two hypotheses are

H0 : rI -= A/Eg1 (U )+n 1 ; r 2 = A/Eg 2 (u0 ) + n 2  (27)

H1: r1 A/Eg 1 (U1 )+nl; 1 2 = A/Eg 2 (ul) + n2 (28)

Recall that u = o x sin 6. The probability densities are

P(rlr2/0 (-fN•) exp{R [(rl- A/Eg l(u°))

+(r 2-A/Eg 2 (uo)) 2]} (29)
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p (r r /H) exl I t r-l9,.(l)
1 1 HN0 N0 1

+ (r 2 -Ai/E'g 2 (u )) 22]} (30)

The likelihood ratio is formed from the ratio

of (30) to (29)

exp{(N H(rl-A/Eg,(u,))2 + (r 2-AVg2(ul))2]} 1
0 >£(r) = expt [(rl-A/Egj(Uo))2 + (r2-AV/g2(uo))2]} <

2 H2
02

The log-likelihood ratio is

£n£(r) rl(g l (ul)-gl(uo)] + r2[g2(ul)-g2(Uo)]

HAVE22 2 2 >i

+ A-- g2 (u)-g (ul)+g 2 (u)-g 2 (u) 0

S0

(31)

The log-likelihood ratio, denoted Z, has statistics as

follows:

E{U/H} = ArE[gl(ul)gl(uo/-gl22
S/- 1 (u,)+g2 (u,)g 2 (u9-g-2 (u,)'

+ArE 2 (u) 2 2 2 (
+ •[-gl2 (uo) -g 1 2 (ul)+g2 2 (uO) -g 2 2 (uI) ]

A•22 (Ul)+g22 0)g221
=ArE~g 1 (uo)g.1 (u1.)+g2 (uo)g2 (u1 )]

2 [gl (uo)+gl 2 (u) 2 (uo 2 (ug H

= E 0 (I-p 0 (32)
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p where

Eo g1 2(uo) + g1 (ul) + g 2 (uo) + g2 (uI)

and

P0  2/E [gl(uo)gl(uI) + g 2 (uo)g 2 (ul)] (32a)

similarly, !

EA L/- E1P) (33)E{£/H 1 1 = --• Eol 0 o) 33

The variance of k is

Var(£/Ho) = E{ (£Z-)

2 2 2 2
0o/[ (UO)+gl2(U 1 )+g (U0 )+g 2 (U1 )

- 2(gl (u) gl(u )+g2 (u )g (Ul ))]

0 /2 Eo (i-•p) (34)

From these statistics, the pdf's of Z given each

observation hypothesis H and H are

plZ/H0 1• 1 expi - 11P,+ Ly- Eo11-0o1 2 (35)(1 ' A/E 21

211a 2(Z

p(l/Hl) I2 exp( [(-22[£ 2- Eo(ll o1 1} (36)
211a 

20£

where
2

ci =N /2 E (1-P
0 0 0
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For this situation, P{Z>O/H0} = P[Z<O/H I and the proba-

bility of error then becomes

p(c)= /2P{Q0>0/H + 1/2 P{Z<O/HI = P{%>O/H 0 }
00

-ftop(/H 0 dl

1 1 A/E 2exp{ - E (1-Po)) 1} dk(37)2Ho 20 + i
J.-o 2fl1a 20~

This integral can be simplified with a change of variables

by letting

(Z+ AvrE/2 E (l-p))
X 0=

Therefore

d£9
dx =

Substituting back into (37) yields

P(E) f 1 e dx (38)

where

x' = ArE[E /2No (I-po)]

Equation (38) can be recognized as the Q-function [Ref 6].

The probability of error is now
EE

P(s) = Q(x') Q[A( - (l-P))½] (39)
2N 0

0
24
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If symmetry in the error is assumed (i.e., uo = -U1 = u)

then
.2 .2 2 2

E0 = sin u + sin u + cos u + cos u = 2

and from equation (32a) with uI = -u = u0

2 2p0 = (-sin u + cCs u) = cos 2u

The variable P0 is known as the correlation coefficient

[Ref 6] and its result is consistent since it must vary

between ±1. Equation (39) becomes

P(C) = Q[A(E/No0 (. - cos 2u)) 1 (40)

Having determined the probability of error, the ZZ

bound can now be derived for the MSE of the radar model.

If we substitute u = k x sin e and let k x =1, then for
0 0

an MSE of 2 (0) the lower bound is [Ref 12)

C2 (u) > u2 Q[A(E/N (1-cos 2u))½]

and then

2 ( si2 6 Q[A(E/N (l-cos(2 sin OM (41)

Two properties can be seen from equation (41).

First, for large SNR (E oN ) the argument of the
0 0

Q-function will be large, giving a small value for Q(x).

This means a small probability of error and hence a

smaller MSE. This is intuitively consistent sinc-e we would

expect to track well at high SNR. As e increases, 2(0)
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increases, which tells us that the MSE becomes larger when

we are not pointing at the target. So in order to keep

the MSE small the boresite must be kept on the target.

The Cramer-Rao Bound

In reference [2], it was shown that for a one-

dimensional Amplitude-Comparison Monopulse Radar, the CR

bound for the variance of the estimated target position,

Var(O), was

^ 1
Var(e) > 2 2E-g2 *2 (42)

A o( 1 (u)+g 2 (u))

o 2a2 g 2 2

For this case gll(u) = sin u cos e and (u)

2 2cos u cos 0 so (41) becomes

A1Va %e 2(02 a)

Var(0) >~ ,2 2ECo2 o A2 SNR cos2 0

*2 *2
The factor (gl (u) + (u)) can be shown to be1~ 92

the inverse of the beam-width [Ref 2].

The CR bound states that a narrow beam-width will

ensure a small variance. But the CR bound does not account

for the fact that when the threshold effect and breaklock

occur, the target is outside of the radar beam-width and

the variance of the error is very large. At this point

(i.e., very low SNR) a narrow beam-width no longer guar-

antees a small error variance. The bound becomes
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unreliable and cannot accurately lower bound the MSE at

low SNR levels.

The Tracking Loop
To gain insight into where the breaklock point

occurs it is necessary to design a tracking loop which

uses equation (22) to steer the antenna boresite toward

the target. Figure P shows a block diagram of the mono-

pulse system which will be simulated.

Discriminator

Servo

Fig. 8. Block Diagram of AC Monopulse Radar Showing
the Estimator being used to Track a Target

In Figure 8, Sl, s 2, n, and n 2 are the representa-

tions of the signal and noise components respectively,

where sI = A/Egl(u) and s2 A./ Eg 2 (u). The observation

r= s + n and r 2  S 2 n are random numbers. For

simulation purposes they are determined by using a random

number generator to generate nI and n2 which are then

27
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ands r

added to sI and s2 respectively. The antenna functions

are determined by noting that equations (10) and (11) can

be written as

gl(u) = cos (sin 0) (10)

g 2 (u) = sin (sin 0) (11)

where kox 0 =1 (this means that the distance between the

two point sources is small and has been chosen so that

k ).

The target position relative to the boresite is 0.

Since this is a computer simulation, the actual target

position is inserted into the antenna functions to provide

the amplitude weighting. With this information, rI and

r 2 are calculated and fed into the estimator. The esti-

matoýc to be used is equation (23) which, restated, is

A A

= rI sin (sin e) - r 2 cos (sin 0) (23)

The error, e, is calculated using the estimated

target position 0, and the random numbers r1 and r 2 (which

are calculated using the actual target position 0). The

target position, estimated and actual, is always relative

to boresite. If we assume that the radar boresite is

AA
pointing to the estimated target position 0, then for each

observation 0 = 0 and the resulting error, e, contains

information pertaining to the actual target position.

28
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The error c, which now contains the target posi-

tion 0 and a noise component is fed to the discriminator.

Recall that the irran of the error e is equation (22)

rewritten here as

S AS=sin (u - u)

= sin (sin 0 - sin e) (43)

If a 3 dB beam-width of 3 degrees is assumed,

Ae or the difference between boresite and the target

will be a maximum of 1 1.5 degrees. For small va.lues of 0,

sin OZ6, therefore

sin (6-0) (44)

If we assume that the boresight is pointing at the esti-

mated target position, then

= - sin 0 (45)

Equation (45) can be further reduced to

= -e (46)

For the range of 0 chosen, the actual discriminator curve

is shown in Figure 9.

Becaus" of the assumptions made, 0 in equation

(46) is the same as AO, the distance in degrees the bore-

site must move to be pointing at the target.

2
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Fig. 9. Discriminator Curve Showing Maximum

Values of c and e or AO

As stated before, the error is transformed into a

corresponding, AG by use of the discriminator curve. The

error c, fed to the discriminator is random due to the

additive channel noise. The discriminator curve used L
represents the error without noise; therefore, the corres-

ponding AG produced is also random.

The next step in the tracking loop is to input

the target position e, or AO, into the angle servo to

steer the boresite to the target. The value used for AO

will be constant during each observation interval; there-

fore, it can be modeled as a step input to the servo. The

amplitude of the input to the servo after the next observa-

tion will reflect the change in the radar boresite as it

mo~ves closer to or away from the target. The input becomes

a series of step functions whose amplitudes are proportional
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to the distance the boresite must move (in either direc-

tion, ±0) to the target.

The output of the servo will be delayed due to

the inertia of the antenna and the drive motor, but it

needs to be approximately equal to its input. The servo

used should therefore provide a zero steady-stete error

for a step input.

~ I °

Fig. 10. Angle Servo Feedback Control Loop H

Assume the angle servo has a 2eedback control loop

as shown in Figure 10. The transfer function is

•out KAO K (47)
48 2
in s + sw + K

Equation (47) can be factored into

G (s) K (48)
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Using (48) as the servo transfer function and assuming

the input to the servo to be a step function AO(s) = Aý/s,

the servo output becomes

AG/s - G(s) =s e (49)
s(s+a,) (s+g)

which has an inverse Laplace transform of

AOK(ýe- t - ae-ýt)

AGK + (50)

If we let a = -o + jw, 8 = -o - jw and K = a 6, then after

some manupulation, equation (50) becomes

TAO'(t) AO[l-e (- sin wt - cos wt)] (51)

The values of a and w are obtained from the poles of the

transfer function. The pole positions are chosen so that

a value of a will damp the servo system response such that

it will settle out without four system time constants.

This settling time will give an output within 5 percent of

the input value. The settling time is chosen to be a multi-

tude of the PRI of the radar. The PRI used for the computer

simulation is 1/200 pps or 5 ms.

Once an output AG' is obtained from the servo,

it is used to steer the radar boresite. This is simulated

by changing the antenna functions g 1 (u) and g 2 (u) to reflect

the new target position. If there were no noise, the
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boresite would point ditectly at the target after one

pulse. Because of channel noise, however, the boresite

will point close to the target after each pulse but never

directly on it. The new (or adjusted) antenna functions

produce a new error - which in turn produces a new Ae.

This loop continues as the radar boresite tracks the target

within some small error (MSE).

To begin the problem, a stationary target is

tracked and the MSE is calculated. The stationary target

is a simple case since in the routine the target position

is initialized within the 3 dB beam-width and tracking it

consists of maintaining the boresite on it.

To consider a moving target, a relationship between

the target position, velocity, and range is needed.

Figure 11 shows the geometry of the situation. The dis-

tance .the target moves in the positive x direction is

VTt, where V is the target velocity. R is the range to
VT 0

the target at the point of acquisition and RT is the

changing range to the target. Note that the target range

RT and the SNR are inversely proportional. The changing

SNR can be accounted for by using the radar range equa-

tion [Ref 1].

P R GR 2x2UT
SNR=R 3 (52)
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zI VT t

RRT

/ T

Fig. 11. Geometry Showing the Relationship Between
Target Position, Velocity and Range

I where R = range to the target

PR = power received

G = receiver gain
R

X = wavelength of carrier

aT = target cross-section

N = internal receiver noise power

For the problem at hand, the right side of equa-

tion (52) remains constant. If we let SNRo and RO be

the initial SNR and target range and SNRT and RT be the

new SNR and target range we have

PR GR 22 T

SNR R° R4R T (53)
0 0 ~(411L) 3N

and

SNRT RT 4 R 3 (54)
T T (4H)3 N

(4
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Therefore

SNRT RT = SNR 0 R0 4

and

R 4
SNRT = SNR 0 (R) (55)

Equation (55) can account for the changing SNR as the

target range RT increases for a moving target.

V~t
tan e Y

T R
0

OT(t) = tan- (VTt/Ro) (56)

With a relationship for eT as a function of velocity,

time, and range, the target position can be accounted for

in the computer simulation.

The Error

The tracking error for the stationary and non-

stationary case is the difference between the radar bore-

site and target position.

ET = 0B - 0T (57)

The simulation will take 50 observations which could con-

sist of every pulse or every several pulses depending on

the settling time chosen for the angle servo. Each set

of 50 observations is considered a run. In each run a
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"seed" is used to generate a vector of random numbers

which are used to determine nI and n 2 which in turn are

used to calculate rI and r 2 . A different seed is used for

each separate run and a new set of random data is generated.
If equation (57) is squared for each observation and then

averaged over the number of runs, an approximation of the

MSE is obtained. For an example see Figure 12. In

Figure 12a the value at observation 4 is summed over all

the runs and then divided by the number of runs to obtain

the MSE for that observation which is plotted in Figure 12b.

If this is done for each observation, the approximate MSE

is obtained for a single SNR level. Recall that an obser-

vation can be one pulse or a multiple of pulses.

The threshold or point of breaklock can be deter-

mined by observing when the MSE increases continually per

observation. As the SNR is decreased, the plots of the

MSE will look similar to Figure 13.

Since the beam-width is ± 1.5 degree, an error c

producing a A8 greater or less than ± 1.5degrees will be

automatically limited to ± 1.5degrees. The servo will then

move the boresite its maximum limit and another observa-

tion will be made. If the error developed at this obser-

vation produces a AO again greater than the maximum,

AO will automatically be limited again to ± 1.5degrees.

The servo will not be able to keep up with the moving

target to be able to track it. This is breaklock and can
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E2

Pulses

EI2

Pulses

a

MSE

4I 1Pu Ises

b

Fig. 12. (a) -mple Plots of the Error Squared per
Observation for One SNR Level; (b) Example Plot of

the MSE per Observation for One SNR Level
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MSE

Pulses

Fig. 13. Sketch of MSE Becoming Unbounded
at Breaklock

be caused by a number of factors. The target velocity

can be fast enough at a certain range to cause breaklock,

the servo could be too slow to "catch up" to the target,

or the SNR can degrade to a point where the threshold

effect occurs. The velocity, range, and servo will be

adjusted to prevent breaklock except at a low SNR.
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III. The Computer Program

The programs for the stationary and nonstationary

target are straightforward. The only subroutines used were

two IMSL subroutines, GGNML and MDNOR.

The program was designed so that the radar param-

eters such as PRI, servo settling time, and boresite posi-

tion can be initiated at the beginning. The initial target

position must be within ±1 .5degrees of the boresite posi-

tion.

The IMSL subroutine GGNML is called to generate a

vector of random numbers to represent the noise components

n and n 2 of the observations r1 and r 2 . A vector of 100

random numbers is generated and two numbers are used for

each observation. The program is set up for 50 observa-

tions but can be adjusted for any amount provided the random

number vector is also adjusted. The random numbers r1 and

r2 are then calculated using equations (14) and (15). The

value for 0 is calculated by subtracting the boresite posi-

tion from the target position. It is then updated as the

boresite is moved. Once an error is calculated from

equation (23), it is converted to a AO by use of equation

(24). This AO is used as input to the servo equation (51).

The output of equation (51) is used to move the antenna.
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This is simulated by changing gE (u) and gA (u) to reflect

the new difference between radar boresite and the target.

For a moving target, equation (54) is used at this point

to calculate the new target position. The SNR will change

as the range from the radar to the target increases. This

is accounted for in the program for the moving target. The

boresite position is updated by adding the servo output to

the old boresite position.

All of the above are accomplished for one observa-

tion. After this is done the tracking error is calculated

by subtracting the target position from the boresite posi-

tion. This value is squared and stored in a 50 column by

15 row array. The ZZ and CR bounds are also calculated at

this point and stored in a similar array. After 15 runs,

the columns of the array are summed and divided by the

number of rows (15) to form the mean-square error per

observation. The MSE is then plotted for 50 observations.

The entire process is then repeated for a lower SNR level.

The SNR level was varied from 35 dB to -10 dB.

The target velocity used was 609.6 meters/second. The

servo settling time used was 100 milliseconds. The acquisi-

tion range was 6000 meters.

To calculate the ZZ bound, the IMSL subroutine

MDNOR was called to evaluate the Q-function used to deter-

mine the probability of error.
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onlyCalculate Changing SNR

Error
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Obtain Servo
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Fig. 14. Flow Diagram for Stationary/N~onstationary

Target Tracking
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Fig. 14--Continued
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IV. Results and Conclusions

General

The computer program was run for the stationary

and the nonstationary target with the SNR varied from

35 dB to -10 db. For each SNR level, 15 runs were made

taking 50 observations each. The MSE per observation was

computed and plotted. In addition to the MSE, the Cramer-

Rao and Ziv-Zakai bounds were calculated per observation

and plotted (see Appendix Band C).

The object was to determine the point of breaklock

and how the lower bounds can be used to quantify it.

Stationary Target

As the SNR level was decreased, the MSE increased.

It became increasingly difficult for the boresite to stay

on target. The MSE became unbounded between -7 dB and

-10 dB. Breaklock is assumed to have occurred here.

Cramer-Rao Bound

As Figure 15 shows, the MSE at 7 dB is greater

than the constant level of the CR bound. As the SNR was

decreased the CR bound became very inaccurate. In

Figure 16 the MSE is below the CR bound in some places.

It appears that the CR bound is the average of the actual
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r ~MSE. But according to th3 definition of the lower bound,

t the MSE must always be greater than or equal to the lower

bound. Fiqure 17 shows the MSE compared to the CR bound

at -20 dB. The MSE is completely below the CR bound.

The Ziv-Zakai Bouiid

The ZZ bound for the stationary target tends to

follow the general trend of the MSE. Note the large magni-

tude difference between the ZZ bound and the MSE (see

2
Figure 18). The ZZ bound is the product of the sin 0 and

the P(E). Neither is ever greater than 1; therefore, the

ZZ bound is never greater than 1. The importance of the

ZZ bound in this case therefore is that it shows the trend

of the MSE. Note in Figure 18 that the ZZ bound at many

points has the same peaks and valleys as the MSE. In

Figure 19 the MSE becomes unbounded. This trend is also

shown in the ZZ bound.

Moving Target--Cramer-Rao Bound

Figures 20 and 21 show the MSE as compared to the

CR bound. Breaklock occurs below 5 dB when the MSE becomes

unbounded. The CR bound does not show any trend toward

breaklock even at a very low SNR (Figure 21). The CR bound

is generally constant with a slight upward trend toward the

end of the run. This is due to the SNR decreasing as the

target moves horizontally past the radar. The upward

movement of the bound is not related to the actual MSE.
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As the SNR is decreased, the CR bound tells us that the

MSE is increasing but gives no indication when breaklock

occurs.

Ziv-Zakai Bound

As in the stationary case, the ZZ bound follows

the trend of the actual MSE. The ZZ bound becomes unbounded

as the MSE becomes unbounded (Figures 22 and 23).

Among other reasons, the breaklock point occurs

because of SNR level, the target range and speed, and the

angle servo response time. The exact level of SNR for

breaklock is not important here since it would depend on

the parameters of an actual (not simulated) random system.

What is important is that if these parameters were taken

into account, the breaklock or threshold of an actual sys-

tem could be predicted by the ZZ bound.

Ziv-Zakai Bound Compared to

Cramer-Rao Bound

It is interesting to observe why the ZZ bound

follows the actual MSE closer than the CR bound. The CR

bound as stated in Chapter II is

Var(O) > 2 (42)
SNR cos 2

The angle 6 is the difference between the bore-

site and target position on the radar beam (i.e., the

error). It is limited to ± 1.5 degrees since the 3 dB
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beam-width is 3 degrees. The cosine of a very .mall angle

is approximately 1 so the CR bound is essentially con-

stant for each SNR level (i.e., it is not influenced

heavily by the error). On the other hand, the ZZ bound is

2 22(0) > sin OQ[A(E/N (1-cos 2u))½] (41)

where u sin 0 and 0 is the target position relative to

boresite.

The probability of error is related to the SNR

level and is small for lage SNR and approaches 1 for small

SNR. The factor that allows the ZZ bound to follow the

general trend of the actual MSE is sin 2  or 2.

Since a is the error between the boresite and
.2 2

target and is limited to ± 1.5 degrees, sin 2 = 0 which

can be related to the mean-square error. Hence the ZZ

bound is more prone to follow the actual MSE. Because of

the tremendous magnitude difference between the ZZ bound

and MSE, the ZZ bound does not give a good indication for

a lower bound on the MSE. It could be possible, however,

to scale the ZZ bound to the actual MSE and not only be

able to predict its trend but a more accurate and realistic

lower bound. More research would be required to develop a

scaling factor.

The reason that e is limited to ± 1.5 degrees is

because it has been assumed that there are no side lobes

to the radar or that they are being neglected. Once the
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target leaves the 3 dB beam-width it can no longer be

tracked., However, if there exists a significant level of

sidelobes, then 0 could be limited to the angle of these

sidelobes.

As a final conclusion it is necessary to observe

what information the two bounds give as to how to keep the

MSE small. In reference [2] it was concluded that the CR

bound states that the variance is small for large SNR and

narrow beam-width. It is smallest when the boresite is

kept on the target. This can be seen from equation (42).

2The cos 0 term is 1 when = 0 which means the"

boresite is on the target. The cos 0 decreases as e becomes

larger, therefore increasing the variance. The ZZ bound

has the same characteristics. The smaller 0 is the smaller

the MSE. The contribution of the probability of error is

mainly due to the SNR level.

In communication theory, the correlation coefficient,

p., is used to measure the similarities between two signals.

If both signals are exactly the same, p = 1 and if they are

opposite, p = -1 [Ref 111. In this thesis the correlation

coefficient is used in a slightly different manner. The

correlation coefficient was determined to be p = cos 2 u

from equation (32a). The variable u is equal to sin 0 and

for a small e, sin e0Z ; therefore, p = cos 20 . The angle

0 is the target angle relative to the boresite. When the

boresite is directly on the target, e 0 and p = 1. As 0
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increases the correlation coefficient decreases. This

means that for two targets symmetrically located on the

radar beam, the resolution ability increases respectively

with the separation angle 20. For the problem presented

in this thesis there is only one target; however, there

exists the possibility of a false target at its symmetrical

opposite. By using the correlation coefficient, the error

associated with detecting the target or its symmetrical

opposite is accounted for in the error probability in

equation (41).

Recommendations

The application of the ZZ bound to the mean-square

tracking error has proven fruitful. It is well worth recom-

mending an investigation of the two-dimensional case. Once

the probability of error is determined, and a suitable two-

dimensional i'equality of the tchebycheff type 4.s found,

the ZZ bound _or the covariance of the tracking error can

be determined.

It is also recommended that an additional noise

source be considered in the one- or two-dimensional case.

The noise source can be a repeater jammer or chaff cloud.

As the radar is tracking the target the noise source will

expedite breaklock. The question of what noise power is

I needed to cause breaklock and how can the ZZ bound help in

quantifying the MSE should be-addressed.
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Further recommendations are to consider actual

servo parameters for the radar system and incorporate

random target motion to simulate evasive action. Also an

investigation of sidelobe structure for a typical mono-

pulse radar would be an interesting addition to the track-

ing error.
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Appendix A

The Two-Dimensional Monopulse Radar Model and the

Two-Dimensional Ziv-Zakai Bound

Introduction

An attempt was made to model the two-dimensional

(2-D) Amplitude-Comparison monopulse radar and derive a

2-D ZZ bound. The ZZ bound used in this thesis was derived

for a one-dimensional (azimuth) situation. To expand c:he

bound to 2-D is not a simple task and, as will be shown,

its complexity increases four-fold. The 2-D radar model

is slightly more complex but not difficult.

Since it is simpler, the 2-D radar model is devel-

oped first with its resulting antenna functions. The

antenna functions derived could be the source of some of

the difficulties encountered in developing this approach.

For example, they are no longer independent of each other.

Each beam (sum and difference) in each diniension, contains

both azimuth and elevation information. This result seems

consistent with what would be expected from a two-

dimensional system. The problem could arise from using

the Gram-Schmidt orthogonalization procedure to describe

the observations.

After the 2-D model is developed, the 2-D ZZ bound

is discussed. The attempt to derive this bound was
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S) abandoned due to two main obstacles encountered. Recom-

t mendations are also included as to what directions may be

taken to overcome the obstacles.

The Two-Dimensional Radar Model

A 2-D Amplitude-Comparison monopulse radar con-

sists of four antennas placed symmetrically in the x-z

plane. As in the one-dimensional case, the antennas are

considered point sources in an array. Figure A-1 shows a

simple model of the 2-D case where antennas A and B aze

split into a sum and difference and likewise antennas C

and D. This configuration produces one sum beam and two

difference beams.

A-

Aaz

S°C+D

Fig. A-1. A Model of a 2-D Monopulse Showing
Four Antennas and the Sum and

41 Difference Beams

I The azimuth difference beam is obtained by sub-

tracting the difference of the four antennas and the ele-

vation difference beam is obtained by subtracting their

sums. The difference beams are
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A A-B C-D
az •-Y /T

(A+D) - (B+C)
- (A-1)IT

(A+B) - (C+D) (A-2)

Ael =2

The sum beam is obtained by adding the antenna sums.

- (A+B) + (C+D) (A-3)
VT

The sum and difference beams can be used to derive

the antenna functions. Assuming that the monopulse can be

modeled as a 2-D array with four point sources, the

approaching plane waves can be described as (see Figure A-2)
- A

EA = E Ae (A-4)

EB = E e (A-5)
Bj r
E = E JKc'r

EC = Ee (A-6)

ED = E e (A-7)

where E is a constant.o

KA = k (xx+zz) KB = k (-xx+zz)

K= k (-xx-zz) KD = k 0 (xý-zý)
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00
6x

Y

C D

Fi-. A-2. Coordinate System Shoving Four
Point Sources in an Array

and

r = x sin 0 cos • + y sin 0 sin * + z cos e

Performing the dot product K-r in equations (A-4) through

(A-7) gives

EA = E0 exp[jk (x sin 6 cos • + z cos 0)] (A-8)

EB =EO exp[Jko (-X sin 0 cos 4 e- z cos 0)] (A-9)

E = E exp[-jk (-x sin 0 cos -v+ z cos )1 (A-9O)
C 0 0EC = E exp[-jk (x sin 0 cos 4+ z cos 0)] (A-10)

SD = Eo exp[Jko(x s cos z cos o)] (A-11)
I Ii

IIf we let u = ko0 x sin 0 cos and v = k° z cos 6

and use Euler's equation, the antenna functions can be
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obtained by substituting equations (A-8) through (A-li)

into (A-i) through (A-3). If the magnitude of the result

is taken, the antenna functions are [Ref 8]

Ael = 2/2 E cos u sin v (A-12)

A az = 2/2 EO sin u cos v (A-13)

E = 2 2 E cos u cos v (A-14)

By normalizing these functions, the final form of the

antenna functions becomes

g1 (u,v) = sin u cos v (A-15)

g 2 (u,v) = cos u sin v (A-16)

g 3 (uv) = cos u cos v (A-17)

A block diagram of the model can now be shown.

Figure A-3 shows the output of the four antennas (target

return) being weighted by the three antenna functions.

White gaussian channel noise is added to the weighted

target returns to form the observations rl(t), r 2 (t), and

r3(t). The same assumptions apply to the WGN as did in

the one-dimensional case.

In order to use the observations to obtain a

maximum likelihood estimate of the azimuth and elevation

angles, the Gram-Schmidt orthogonalization procedure is

used as before with the one-dimensional case. The vector

observations are therefore
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IV +• g2r'v SERVOS
IT

Dimensional Radar Model

Fig. A-.Block Diagram ofteTwo-

rI = AAE gl(u,v) + n, (A-18)

r AE g 2 (u v) + n2  (A-19)

r A, g3 (u, + n3  (A-20)r3 = v) 3

The mean and variance of these vectors are

E{r /A,u,v} = AYE gl(u,v); Var(rl/A,u,v) = No/2 (A-21)

E{r 2 /A,u,v} A/E g2 (u,v); Var(r 2 /A,u,v) = N /2 (A-22)

E{r 3 /A,u,v} = A/E g3 (uv); Var(r 3 /A,u,v) = No/2 (A-23)

The joint pdf is again the product of the individual pdfs.

P(r r2/A'u'v) = ( 1o 3/2

exp{ (rlA VgE)g 2 + (r -A 2+(r-2 2
2(No/2)[ 12-/E92 (r 3-a/Eg3 ) 3

(A-24)
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The maximum likelihood estimate is obtained by finding

(Ref 6]

-Xp(rlr 2 r 3 /A,u,v) = 0

_-p(rn r r /A,u,v) = 0
au 1 23 i

- (-j1P(rlr2 r3 /A,u,v) = 0

Let -(u,v) = (u,v)

for notational purposes.

The steps to obtain the maximum likelihood esti-

mate are the same as in the one-dimensional case. The

"result for the A estimate is

. rlgI + r 2 g2 + r 3 g 3
191 2 2 2 (A-25)

E (g 1+ g 2 + 93

The general error equation is

* 22"r 1 (g 1 g 2g 2 + g 1 g 3 g 3 - g 2 g1 - g 3 g1 )

*2* 2'
+ r 2 (g 1 g 2 9 1 + g 2 g 3 g 3 - g 1 g 2 - g 3 g 2 )

• "2" 2"
+ r 3 (glg3 gl + g 2 g 3 g 2 - gl g3 - g2 g3 ) = 0 (A-26)

The partial derivatives of the antenna functions are
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ag, sin u sin v du and 19, coL u Cos v dv (A-27
au av ab)

392 Cos u Cos v du and L9 2 sin u sin v dv (A-28
DU 3V ab)

B93 a93
Du sin U Cos v du and -ýv -cos u sin v dv (A-29

ab)

Substituting these into equation (A-26) yields

2
sin u Cos v r 1 Sin v + r 3 Cos v)

r 2 Cos U Cos V (A-30)

A 2
C 2 sin v Cos U(r 2 sin u + r 3 cos u)

r Cos u Cos v (A-31)
1

1 and c 2 represent the error equations for azimuth

and elevation. Note that both equations contain azimuth

and elevation information.

The expected values of E 1 and E: 2 are

2
AVE Cos v sin(u - u) (A-32)

2
C A,,ýE: Cos u sin(v - v) (A-33)2

With these results it can be seen that if u u then

0 and if v = v, c 2 = 0. if u represent-ed an azimuth

bearing and v represented an elevation bearing, these two

equations could be used separately to steer the radar in
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each dimension. However, recall that u kox sin 6 cos 0

and v = k z cos 0. A change in u will effect v and vice

versa.

From this point on it becomes clear that the 2-D

case is not simple and straightforward. Equations (A-32)

and (A-33) are not independent of each other. Not only

will there be a variance of F1 and c but also a covari-

ance.

The error equation for the one-dimensional case

described a two-dimensional discriminator curve (i.e.,

for an error c a AO was obtained). The error equations in

the 2-D case describe a three-dimensional discriminator

curve. For each value of v in equation (A-32), there is

a 2-D discriminator curve which yields a Au for every e1.

Likewise, in equation (A-33), for each value of u there is

a 2-D curve that yields a Av for every e2 "

The variables u and v represent the actual target
A A

position, whereas u and v represent an estimate of the

target position. For computer simulation purposes, the

values of u and v are known and will therefore determine

what curve in (A-32) and (A-33) to use. The actual error,

however, will be derived from equations (A-30) and (A-31)

and th2 resulting 6 and c2 are applied to (A-32) and

(A-33) to obtain Au and Av. The Au and Av obtained will

theoretically drive the boresite to the target. Because

of WGN, the boresite will not point directly at the target.
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Instead it will be within some variance (or covariance)

of the actual position. A new error will develop for each

observation which results in steering the boresite closer

to the target.

The input to the azimuth and elevation servo must

be in the form of Aý and Ae. To derive these values note

that

Au = k x sin Q cos 4 (A-34)

and

Av = k z cos a (A-35)

If we let k x = k z- 1 we have two equations and two

unknowns. Au and A- Are known quantities obtained from

Sthe discriminator curves. The values for AG and A4) are

-I

AO = cos (Av) (A-36)

Av = co,:- (Au/sin(cos- (Av))) (A-37)

Since e and 4 are the difference between boresite and

target, 0 = AO and 4) A4.

With this information a tracking loop can be

implemented. The tracking error in azimuth and elevation

can be computed. Recall that both error equations contain

azimuth and elevation information. It should also be noted

that the results for AO and A4 are dependent. Besides a

separate error for azimuth and elevation, a combined error

J needs to be developed.
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9 This appears to be intuitively consistent with

what one would expect from a two-dimensional Amplitude-

Comparison monopulse. In Figure A-4 the 2-D beam is pic-

tured with a target (x) shown off boresite. The antenna

functions would weight such a target return in both azimuth

and elevation.

Boresite

Fig. A-4. A Two-Dimensional Beam Showing a
Target (x) Off Boresite

In order to move the boresite quickly and most efficiently,

a combined azimuth-elevation error would be necessary.

Steps to implement a two-dimensional tracking loop

were not taken. In order to find the threshold of such a

system and quantify it, a 2-D ZZ and CR bound is necessary.

This is the obstacle that prevented the 2-D case from being

pursued further.

70

S' _



The Two-Dimensional Lower Bounds

The Cramer-Rao (CR) bound is defined as [Ref 6]

Var(u) > 2 -1 (A-38)

Ef 2 p(rlr 2 /A,u)}

for the one-dimensional case. It can be shown that for

the 2-D case [Ref 6]

A ^ -1
Cov(uv) > (A-39)

u-P(rlr 2 r 3 /Auv)}

The Ziv-Zakai (ZZ) bound is not so easily trans-

formed into two dimensions. The one-dimensional ZZ bound

is stated here as [Ref 3]

2 .2e (U) > max sin (6)P (-0,0) (A-40)

where 0 is defined by
p

sin e + sin 0
sine maxp 2

To develop a two-dimensional bound, the same steps

as outlined by Ziv and Zakai must be taken [Ref 12].

The first obstacle to overcome in developing a

2-D bound is finding the probability of error P(•). The

P(c} as used in the ZZ bound is the error probability of
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the best procedure for deciding whether a target is at -0

or 0 when it is known that it is at ore of these positions

and each has equal possibilities [Ref 8]. If we want to

expand the P(s) to two dimensions, four regions must be

considered.

Instead of just the case where a target is at u1

or u 2 , there are now four cases shown in Figure A-5.

Instead of a binary detection problem we now have an M.-ary

detection p where M = 4 [Ref 6 J.

R2  R1

U2 V1  UlV1

u2 v1  UlV2

R3  R

Fig. A-5. Decision Regions for a
Two-Dimensional Case

The four hypotheses axe

H1 : rI = ArE gl(Ulvl) + nI (A-4J1)I
*= A/E g 2 (U1 v 1 ) +

*= A/3 g3 (ulvl) + n3
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H2 r1 = A/E g 1 (u 2vl) + n (A-42)

r2 = AVE g 2 (u 2 vl) + n2

3= AE g3 (u 2 vl) +3

H3 : r = AVE g1 (u 2 v 2 ) + nI (A-43)

r= AVE g2 (u 2 v2 ) + n

r 3 =AVE g 3 (u2 v2 ) + n

H4: r 1  AVE g1 (u1v 2) + n1  (A-44)

2= AE g 2 (ulv2 ) + n 2

3= AE g 3 (ulv2 ) + n 3

From detection theory, with probability of error

costs the decision region R. is given as the values of r.J J

for which [Ref 6:Ch. 5]

P{Hj}p(r/Aj) > P{Hk}P(r/H foc j# k (A-45)

Equal probability of hypotheses is assumed so equation

(A-45) becomes

p(r/Hj > p(r/Hk (A-46)

)) ,Where p(r/i'I.) p~ H etc.
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For decision region R1 we have

p(r/Hl) > p(r/H2) (A-47a)

p(r/H1 ) > p(r/H3 ) (A-4 7b)

p(r/H1 ) > p(r/H4 ) (A-47c)

Similarly, for regions R2 , R3 , and R4

R: p (YH2) > P(r/H) (A-48a)
2 pr' 2) p/ 1 )

p(r/H2 ) > p(r/H3) (A-48b)

p(r/H2 ) > p(r/H4 ) (A-48c)

R3 : p(r/H3) > p(r/H1 ) (A-49a)

p(r/H3 ) > p(r/H2 ) (A-49b)

p(r/H3 ) > p(r/H4 ) (A-49c)

R4 ' p(r/H4 ) > p(r/HI) (A-50a)

p(r/H4 ) > p(r4H 2 ) (A-50b)

p(r/H4 ) > p(R/H3 ) (A-50c)

The next step is to find the likelihood ratios for

each decision region. For notational purposes, let

p(r/Hj)2£j(r) = p(/l
p(r/H)
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p(r/Hj)

jk (r) p(r/Hk)

Using this notation, for the four regions we have

R1: k 2 (r) < 0 R2 : Z 2 (r) > 0

P3(r) < 0 L2 3 (r) > 0

k4(r) < 0 £2 4 (r) > 0

R 3 : k 3 (r) > 0 R4 : z 4 (r) > 0

k 3 2 (r) > 0 £4 2 (r) > 0

Z34(r) > 0 X43(r) > 0

As in Chapter II of this thesis, symmetry will be

assumed in the error. The probability of error will there-

fore be the same in each decision region. The total P(e)

will be the sum of the P(O)'s in each region. This result

is shown as

P(s) = P{H1}P• (Rl) + P{H 2}PC (R2)

+ P{H 3 }P (R3 ) + P{H4}P (R (A-51)

Since P{Hj} = 1/4 and P (RI) = P (R2) P (R) = 1: (R4)
1 Ei 2 E e 4

then

P(C) =P (R) (A-52)

The statistics for the likelihood ratios for region 1 will

be determined and used to describe the IP().
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By following the same steps outlined in Chapter II

we get

Ez A(r)/H AVE ) (A-53)SE £2 (r 1H} =2 T o(I-P2

where 2 2
Eo [g.1 2 ( + g2 (Uv) 2(U

s,(u Iv) I g ( 21 + 92 ( 1 1 )

+ 2 32 2
+ g 2 (U 2V1 ) + g3 (U1 V1 ) + g 3 (U 2 V1 )]

and
_ 2 (g l (ulvl)gl(U2 Vl) + g2 (ulVl)g2 (U2vl)

'J2 Eo0 11 21 2lIg

+ g 3 (u1v1 )9g3 (U 2V1 )]

2E2 2 0 (lp 2 ) (A-54)

Var( 2 (r)/H) Var(Z 2 (r)/H 2 ) N0 /2 Eo(l-P2 ) (A- 5 5 )

Also
Al r)H 2/EE (A-56) I

E{ 3 (r)/H} = o(-P3)

A/ r)H32E olP) (A-57)

Var(Z 3 (r)/H 3) = Var(Z 3 (r)/H 3) = No/2 Eo(I-P 3 )(A-5 8 )

and

A= -r-E( ) (A-59)E{4(r/l 2 -• o(I-P4

E{( 4 (r) /H4  A = 2 Eo(1-P 4 ) (A-60)
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Var( 4 l(r)/H)I Var(Z 4 (r)/H 4 ) N0 /2E 0 (1-p 4 ) (A-61)

The P(s) is

P(z 2 >O/H 2 )P{H 2} + P(z 3 >O/H 3 )P{H 3 }

+ P ( 4 >OH 4 ) P {H4 } (A-62)

Since P{H2 } P{H3 } = P{H4 }= 1/4, equation (A-62) becomes

P(c) = 1/4P(Z 2 >O/H 2 ) + l/4P(Z3 >O/H 3 )

+ I/4P( 4 >0/H 4 ) (A-63)

Each term in equation (A-63) can be expressed as a

Q-function.

EE
P(E= 1/4{(1-Q[A( 2(1-p2 ))½])

0

EE
+ (1-Q[A(I2lN-p))]) }

oEE
+ (lQA--'(- (A-64)

0

Since symmetry is assumed, p2 = p3  P =p

P() = 3/4 {(I-QA(AI(2 - p))1])} ) (A-65)

Now that a probability of error has been deter-

mined the next step is to derive the ZZ bound. Ziv and

Zakai used the Tchebycheff inequality to transform their

probability of error into a form including a mean-square
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error. Since this is a two-dimensional case a two-

dimensional inequality of the Tchebycheff type is needed.

Reference [7] shows several probability inequalities of

the Tchebycheff type. A two-dimensional one called the

Berge inequality is stated as

P(max{ > X) <I+/212 (A-70)
a1  a 2  X 2

where x and x 2 are random variables

u. = E{xi}L1 1

a. 2 = E{(xi-ui) 2

a12 = E{(xl-UI) (x 2 -u 2 ) I

a1 2

C a12

and X > 0

As can be seen from the detinition of p, the lower

bound on the covariance could possibly be obtained from

this inequality; however, attempts to do so were unsuccess-

ful. It is recommended that the Berge inequality be

investigated further as to its possible use in determining

the ZZ bound in two dimensions. A search for other two-

dimensional inequalities may prove worthwhile also.

Once a suitable inequality is found the 2-D ZZ bound
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t can be derived and the 2-1 monopulse radar model can

be simulated and its threshold quantified.
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Appendix B

Plots of Stationary Target MSE Compared to the

Cramer-Rao and Ziv-Zakai Bounds from

35 dB to -10 dB

4
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Appendix C

Plots of Moving Target MSE Compared to the

Cramer-Rao and Ziv-Zakai Bounds

from 35 dB to -10 dB
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Appendix DI

Program Listing

114



PR'OGRAM MAIý.(INFUT,'UTPUTLISTPLOTTAPE5=1P.PUTTAPE6=LIST,9 1 TAPE9=PLCO)
C * THIS PROGRAM SIMULATE" A STAT IONAiýY AND FOVU -G TARGET,

C*BEING TRACKED BY AN A"4PLITUDE-CCMPARISON MONCPULSE- PA0)A: I
C * CALCULATES THE M-EAN-SQUAPE FRPOR., THE CRATMER-PAC HOIIUgV
C * THE ZIV-ZAKAI BCUt.D, AND PLOTS TH[ PESUL-S.

COMMON/GRAFS/TITrLE( 3),ylT (2,Y~?T (2),Y3T (2 ,Y4T ( ))
COMP0'N/ INOU/KIt.,pKOIJTKP
DIMENSION TIME(52),TPK('32),TP (52) ,RMSEA(1595,),RMSC1595O.)
DIMENSION r (100 )9SW'V(15)
REAL NPWRit.10.2
INTEGER PULSE
DOUBLE PRECISICN DSEED

C *INPUT ALL PAR AMETERS
DATA KINKCUTqKF/5,6v9f
DATA DEPRADPITHETAH/57.3,p3.1~1599Q./
DAT A VT 9RO IF09. 6 960OC /I
DATA SNJRV/35. ,30.2,2ý.,2O.,15.,10.,p7.,5.93.,1l.,-2.,-'3.,-7.,-lo.,
1 -20.1

DATA YlT/lCHMEAf. SGUAR91OHE ERP~CR /
DATA Y3T/10HCRAM4ER-RAC,10H HOUND /
DATA Y4T/1CHZIV-ZAKA! 910HBhjUND
REWIND 6
REWIND 9
CALL PLOTS(O.,O.,9)

5 CONTINUE
URITE*,' MOVING OR STATIONARY TARGET(l OR 2)"
READ*91MS
IF(IMS*LEeC) GO TC 5310
WRI TE*," C-R CR, Z-Z HOUND (1 Oý 2)*
R EA 0* 91 B
WRI1TE* 9 EINTER 11SE(C-R) AND Z-Z BOUND SCALE"-
READ~,TM, rZ
WRITE*," ENTER DO LCOP ;ýANGEO
R EAD',liP1,2
IF(IB*EQ*2) GO 'TO 20
Y2TCl )=Y3TC1)
Y2T t2)=Y3T(2^)
GO TO 25

20 Y2TC1)=Y4Tul)
Y2T (2)=Y4T(Z)

25 CONTINUE
D3EED=21047C0C0G.D0
WRI TE(5952)

C *TOTAL OBSER%ATION INTERVAL
T=1.00 .E-3
TX:Tlti.E-3

C *SERVO PARAMETERS
SIG=600 ./TX
0=1':1483 .1TX
NR: 100
TRKC51)=o
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fR 5)=M4
TRC 51 )=C.

IFCIB.CG.2) TP(52)=TZ/4.
TIMEC5.)=D.
TIME(52)=50 .TX/6.
DO 500 IP='1912
SNR=SNRV( IP)
SNR 0=1O***CSNl/10 o
SNRR:SNPO
ROLD=RO
SPWR=1.E-3

DO 200 J=1915

BRSITE:1.5
TRG T=Oe
GO TO 35

30 BRSITE=O*
TRGT=1.

35 CONTINUE
THE TA=TRGT-RR SITE

C *CALL GGBNML AN~D SET UP THE OBSERVATIONS RI AND R2
CALL GGNML(ODSEED9 NR iR)
DO 100 PULSF=1950
P UL SEC=FL OAT (PUL SE )"
R NEW=SRT(CR'* *2. VT* P ULSEC*T )**2 )
IF( IMS.EQ.1 ) Sr.PR=C (R0LD/RtNEW)**4)*SNFC
NPWR=SPWR/-,-"RR
S=S QRT (NPWF)

Nl=R(I )*S

N2=R(I)*S
GD=SINCS3IN(THETAH))
GS: COS(CS UJ CTHET AH) )
THE T ATHETA /DEPI: AD
Ri=C0S(SIN( THETA) )+'J1
R2=SINCSIN( THETA) )+,j2

C *THE ESTIMATOP AND THE DISCRIMINATOR
E=R 1*GD-R2*GS
DTHETA=-E'.OEPOA 0
IF(DTHETA.G`Te1.ý) OTHETA=i.*5
IFCDTHETA.LT,-1*5) DTHETA=-1*5

C * THE SERVO*
SERVO=dI.-EXP(-SIG*T)*(SIG/CM)*SIN(OM*T)+COS(OM*T)))
0TH E T P:DTHE TA *S ERV 0

C *MOVE THE ANTEN~NA
BRS ITE=BRSI TE+DOhETP

C * THE EQUATION TO MCVE THE TARGET
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IF(IMSOE:Q.1) TR'GT=ATAN(CVT*PULSE7C*T)/R0)*DEPRAD
C * ADJUST THETA TO REFLECT NEW POSITION OF TARGET WITH RESPECT
C * TO THE BORE SITE.

THE TA=TRGT-HR SITE
C * CALCULATE MSE

TRKER=-THE'A
R MSI CA(J, PUL SE ) =TR KE l*2
IFCTHETA.GT.1.5) THETAZ1.9

IF(THETA.LT.-1.5) THETA=-1.5

IF(CI BeEQ*2) GO 'rC 40
SM=1.6/SNRR/CCS(THET A)**2
GO TO 45

40 CONTINUE
C *CALCULATE CR AND ZZ f3CUN0S.

U X=SI N H ET A)
R0 COS(2. *UX)
AX=SQRT( (1 -RO) /NPWR)
YX=AX
CALL MU.NOR(YXPX)
PEk1.e-PX
S M=PEX* UX **2

45 RMS (JPULSE)=SM
TIME (PULSE) =TX*PULS EC
T HETA: THE TAft PAD
S NR =10, *A L CG 10 (S NP R
URI TEC6950) BRSUTETRGTPULSECTRKERRMSEA(JPULSE)

100 CONTINUE
*200 C ON T I NUE

URI TE(6*53)
DO 400 K=1950
SUMO.0
SUM 1=0.
00 300 L=1915
SUM=SU M+R M";EA(L ,K)
SUM 1SUMI +RS (L.,K)

300 C ON T INUE
TRK(K)=SUM/15.,
TR(K)=SUMl/15,
WRI TE(6 95 4) TRK (K 9 SNR 9 R'

400 CONTINUE
WRI TE*9, ENTER TITLE(3A10 )*vSNRVC IP)
READC5955) TITLE

C * PLOT THE RESULTS
CALL DRAloCCCTIMETRKTR9Y3,Y4,2,0,5C,1)

500 CONTINUE
Go TO 5

510 CONTINUE
WRITE.," * * * ROUTE 'PLOTI To OIN-LINE PLCTTER*
WRITE*9" * * ROUTE 'LIST' TO PRINTER"
CALL PLOTE(t4 DUM)



REWIND 6
REWIND 9

50 FORMAT(lOX,6(3XE~ll5))
52 FOIMAT(15X,"BRS!TEf ,9XWITRGTw,9XWPULSEC",9X,*TRKE.RYI9XNMSE-Tu)
53 FORMAT( 16Xt"MSEE7"t1 lXv"SNRM q12X9"Rt,")0
54 FOR MAT(1lOX93(3XF1I.5))
55 FORIVAr(3A10)
56 FORI4AT(2A10)

STOP
E ND0
SUBiROUTINE L)RAWCC(XYIY2,Y3,Y4,NGRAPHSNSCALF9r4 P. INTSJOPl-,)
COMMON/G;IAFS'/TI'1LE(3),PYITITLE(2),Y2TITLE(2),Y3TITLE1(2),Y4TITLE(2)
C 0M MO0N /I NCU / KI N,9KOU T,9KP UNCH
DIMENSION X(l),Y1(1 ),V2(l),Y3(l),Y4(1),BIG(43,SMALL(4hoXTITLE(4)

C
C ---- CHECK CALL PARAMETERS FOR EPRORS

I8BO00800=
IF(NGRAPHS*LE*4)GO TO 7
WRI TE(KOUT9lO)
I800803=1

7 IF(NSCALE.LF.NGFAPHS)GO TO 9
WRI TECKOUT, 11)
I BO CBOO~1

9 IF(JOI.N .GE. -1 *AND. JOIN .LEe 1)GC TO 14
WRI IECKOUT, 13 )
I BO oBOO~1

C
c ----ERROR MIESSAGES FOP CALL PARAMETERS

1.0 FORMAT(1H-91CX9*????? TOO MANY ORDINATES FCR DQAwCC [E~EC*)
11 FORMAr(1H-91OX9*????? *91iSCALEv LAPGER THAN NGRAPHS [CIE[*)

13 FORMAT(1H-,IOXv*???T?? 9JCISL' IS OUTSIDE ALL'7WAEBLE ;ANGE [E*
C
C
C

14 CONTINUE
C ----AUTOMATIC SPECIFICATIONS

0R0=4. S ABSC=6. s SIZE=*25 $LETTERS=30
NX=8SXTITLE (1 )=HPULSE'
NY1 =NY2=NY3=NYI4:20

C
30 IF( I BOGOBO NE9 1 )G C TO 33

WRI TE(KOUT927)
27 FORMAT(1H-v5Xp*ERR0R IN CALL TO ORAWCC N IO PLOTS*//)

RETURN
C
C ---- CENTER THE Y-AXES
33 BOT TOM=(Q11. -ORD-S IZE)/2*

C ----FIX ORIGIN FOP Yi
GRA PHS=NGRAPH S-i
CALL PLcJTCGPAPHSsB0TTOM,-3)

C
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* IF(NSCALE *EQe C)GO TO 34
V C --- CALCULATE SCALE FACTORS FOR EACH ARRAY

CALL SCALE ,qABSC,'NPOINTS,1)
IF(NSCALE otEo 1)G3 TO 80
CALL SCALE( Yl ,OPO,1POIN TS91)
IF(NGRAPHSsE0.1) 61 TO 34
CALL SCALE(Y29CPDp'4POl'NTSt1)
IF(NGRAPHS.EO.2) GJ TO 34

31 CALL SCALE(Y3,OFDoNPOI*JTS,1)
IF(NGRAPHSoEQ*3) GO TO 34

32 CALL SCALECY4,CFD,'iPCINTS,1)
GO TO 34

C ---- THIS SECTION ACCOMPLISHES IDENTICAL SCALING
C
C ----SEARCH YiC ) AND Y2( ) FOR MAX AND MIN VALUES'

80 BIG(1)=SMALL 1 )Y1 (1)
BIG (2)=SMALL(2)=Y2C 1)
DO 85 1=2,t.POINTS
IF(YlCI) *07. BIG(l) ) BIGCL)=Y1(I)
IF(Y2(I) *GTo BIG(2) ) BlGC2)=Y2U)

IF(Y2CI) .LTe SMALL(2) ) SMALL(2)=Y2C1)
85 CONTINUE

XMAX=AMAX1C BIG(1.vfiIG(e2)
XMIN=AMIN1(SMALL(1),SYALL(2))
IF(NSCALE *LT* 3)GO TO 100

CIC ----SEARCH Y3( ) FOR ITS MAX AND MIN VALUES
BIG (3)=SMALL( 3)Y3 (1)
DO 90 1=2tNPOINTS
IF(Y3(I) .GT* BIG(3) ) HIG(3)=Y3(I)
IF(Y3I) .LTs SMAALL(3) ) SMALL(3)=Y3(I)

90 CONTINUE
IF(XMAX *LT* BIG(3) )XMAX=BIGC3)
IF(XMIN .GT. SMIALL(3) )xmrN=SMALL(3)
IFCNISCALE *LT. 4)G0 TO 100

L ---- SEARCH Y4( ) FOR ITS MAX AND MIN VALUES
BIG (4 )=SMALL( 4)=Y4C 1)
DO 95 I=29NPOINTS
IF(Y4Q) eG-o BIG(4) ) BIG(4)=YftI)
IF(Y4(I) *LT, SMALLC4) ) SMALL(4)=YýCI)

'95 CONTINUE
IF(XMAX .LT'. BIG(4) )XMAX=B!G(4)
IF(XMAX .LTo BIG(4) )XMAX=I3G(4).
IFCXMIN oGT* SMALL(4) )XMIN=SMALL(4)

C
C ----FIND THE ADJUSTED MIN AND INCREMENT PER INCH

100 BIG(1)=XMIr.
HIG(2)=X'¶AX
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9 ~CALL SCALE(r3IGCPD,2 91
X M N=HIG( 3)
DEL TA=HIG(4)

C ----PUT THE SCALING INFORMATION INTO THE ARRAYS

C

105 Y4(Cl1PGINTS.1)=XrvIN
Y4( NPOI PTS.?) =DELTA

110 Y3C 'P0INTS*2 )=:4IN
Y3( NP0INTS+2)=0r)LTA

115 Y2( ".POINTS*1 ) 'XFIN

Y1( NPOINTS*1 )=:EMI
C

C ----IS ANY INDEPENDENT '$CALING *>EEDED?
IF(NSCALE .EQ* 2 .ANDe NGRAPHS .01. 2)GO "0 31
IF(NSCALE .EQ* 3 -AND. NGRAPHS *EQ, 4)GO 10 32

C
34 A=0RD-oI

C ---- DRAW AN AXI2" AND A SYMBOL FOR THAT AXIS
CALL AXIS(0.,O.,'(ITITLENY1 ,OR0,90.,Yl(NFGII.TS+1),YlCNPOINTýS+2) )
IF(JOIN.EQ.0)GC, TO 35
CALL SY?4BOL(-.4, A. 15,1,90. -1)

35 IF(NGRAPH3.EQo.I) GO TO 51
CALL AX!S(-1. ,O.,Y2TITLENY2,CRD,9C.,Y2-(NPO'NTS+.1),Y2(flPOINTS+2))
IF( JOI NoEC. ý) GO TO 36
CALL SYMBCLC-1.4,A, .15,2,90 * -1)

36 IF(NGRAPHS-C.-_J,.2) GO TO 51
CALL AXISI-2.,O.,Y3TITLrNY3,ORD,90.,Y3(N-POINTS*1),Y3(NPOINIS.2))
IFCJOIN.EQ.C)GC TC 37
CALL SYMBOL (-2.4,A, .15,9, 90 .,-1)

37 IF(NGRAPHS*EQ*3) GO TO 51
CALL AXIS(-3.,G.,Y4'TITLENY4.,OP~tOc0.Y4(NPOINTS+1 ),Y4(NPOIAN'S.2))
IFCJOIh.EQ9C')GC TO 51
CALL SYMBOL(-3.'AA,.15v4v,90.,-1)

51 CALL AXSO;~XILtNtBC0 XNOýT+~XtPIT~^))
C
C ----DECIDE HOW MANY POINTS SHOULD BE MAPKED WITH A SYMBOIL

IF(JOIN .N[. O)GO TO 72
Ji=0
GO TO 53

72 IFCJOIN *EQ. 1)G0 'rO 68
J= 1
WRI TE(KOUT,71)

71 FORMAT(1H-,5X,*EVERY POINT IS MAPKEO WITH A SYM'R0L*)
GO TO 53
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68 NUM=ABIýC**25 + 1.
IF(NUM *LT. 3)NUM=3
J=NPOINTS/NUMI IF(J 9LT. I)J1l

69 JJ:IABS(J)
WRITE(KOUT970) JJ

70 FORMAT(IN-95X,*EVERY*,14,p* TH POINT It MARKED WITH A SYMBOL*)
C
C --- PLOT X VS YI

53 CALL LA7NE(XY1~,r.POI ,TS,1,J,1)
IF(NGRAPHS .EQ. 1)GC TO 60

C ----PLOT X VS Y2
56 CALL LINECXY2tc.P0INTS,1,Jq2)

IFCNGRAPHS .EQo 2)G) TO 60

C ----PLOT X VS Y3
57 CALL LINE(XvY3,qP0INTSvlJv5)

IF(NGRAPHS .E~o 3)GC TO 60
C ---- PLOT X VS Y4

58 CALL LINE(XsY49fiPOINTS,1,J94)
C
C ----SEE IF A TITLE IS DESIRED

60 IFCLETTERSoE'Q.0)GO TO 61
C ---- CENTER TITLE OVER GRAPH

XX=O.
CALL SYMBOL(XXORD+.425,SIZETI TLEU * LETTEPS)

C ----DRAW BOX AfCzIJND PLOT
RLM=-(GRAPHS+1,)
RRM=ABSC4Klo
RHM=-lo

* ~RTM=ORD+1. *
CALL PLOT (RLMpRBM,3)
CALL PLOT(PFMRF3M,2)
CALL PLOT(RpmPMTM,2)
CALL PLOT (RLMRTM,2 )
CALL PLOT CRLPoBM92 )

C �--POSITIO~N PEN~ FOR THE NEXT CALL DRAWCC
61 CALL PLOT(AHSC.5*,-6oTT0M,-3)

RETURN
E ND

4k!
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